Atomic Technique: Elements of Bowing

IMPULSE

TRAJECTORY OF THE BOW

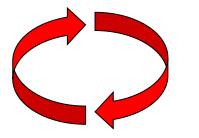
Description

♦ The collision of the bow onto the string which ignites sound

Application

- overcoming vs. harnessing Resistance
- ♦ 3D Clock Directions of preparation/ release via dropping vs. lifting
- **♦ Density Signature**

DIRECTION


VECTORS OF THE BOW

VELOCITY

Clockwise

- ♦ Bridge Curve + Down Bow ♦ Reverse Curve + Up Bow
- ♦ Bridge Curve + Up Bow ♦ Reverse Curve + Down Bow

Counterclockwise

String Length/ Pitch

 \Rightarrow Fixed Formant Function $\rightarrow V \propto 2^n$ (as string

length is halved OR 2f₀, **speed** doubles)

length is halved OR 2f₀, **speed** is constant)

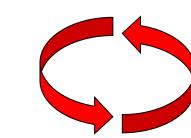
Non-Contact

→ Gravity (Weight) → dropping

vs. lifting based on Impulse

Propulsion from Arm Gesture

♦ Inertia vs **Momentum** vs.


HOLD OF THE BOW

DEXTERITY

 \Rightarrow Fractional Formantation $\rightarrow \nabla$ (as string

indeterminant of **speed**

FORCE

ANGLES OF THE BOW

SHAPE

<u>Description</u>

♦ How Bow Position & Bow Vectors

interact with Arm Gesture

TILT

Polarity

- ♦ Positive (stick leans to the fingerboard) ♦ Negative (stick leans to the bridge)
- \Rightarrow Hair Compliance \rightarrow less bounce, low resistance (ideal for harmonics, brush strokes, shorter **string lengths**)
- ♦ Increases range of Inclination for Down Bows → drogue effect

SKEWNESS

Neutrality

Application

♦ Parametric Curves → sinusoidal,

♦ Curves, ovals, infinity, loops

Lissajous figure

- ♦ Hair Reflexiveness → more bounce, high friction, high resistance (ideal for bariolage,
- spiccato & martalé strokes, long string lengths) ♦ Increases range of Inclination for Up Bows →
- drogue effect

INCLINATION

<u>Slant</u>

- ♦ Tip/ screw away from parallelism to the bridge \rightarrow Formant travel (drifting)
- ♦ Affects Bow Hold & Arm Gesture

Dynamics

- \diamond Down bow \rightarrow crescendo
- (tip down), dim. (tip up) \diamond Up bow \rightarrow dim. (screw up),
- crescendo (screw down)

Plane

- \diamond 4 strings + 3 double stops \rightarrow 7 primary bowing planes
- ♦ Governs string crossings (both slurred and separated)

Range

- ♦ how close/ near the Bow Contact Point is to an adjacent string
- ♦ Two "sides" to any Plane → enhanced **Articulations**

GESTURE OF THE ARM

FLUIDITY

<u>Flexibility</u>

- ♦ Range of motion in muscles, ligaments → extensibility, elasticity of soft tissues
- ♦ Kinesthesia → awareness of Vectors during movement

CHOREOGRAPHY

Mobility

- ♦ Range of motion around Joints/ Hinges → free, functional movement
- ♦ Proprioception → awareness of **Position** regardless of movement

ARTICULATION

<u>Posture</u>

- Positions of Mechanical Advantage
- → Efficiency & **Power**

→ Inclining vs Declining

♦ Synergistic muscle activation ♦ Transportation through all 7 Planes

Timing

- ♦ Cadence of movement
- → Rhythm & Flow
- ♦ Hierarchical joint action
- ♦ Consecutive Bow Trajectories

 \diamond **Entrainment** \rightarrow groove

- ♦ SC Joint (where the sternum & clavicle meet)
- ♦ GH Joint (ball & socket shoulder)

Upper Arm Fulcra

♦ Elbow Joint

Lower Arm Fulcra

- ♦ Wrist Joint
- ♦ DIP Joints (tiny knuckles)

♦ MCP Joints (biggest knuckles)

- ♦ PIP Joints (middle knuckles)

- ♦ Independence, aliveness
- Leverage, shock absorption
 - ♦ Counterweight force

Phalanges

♦ Antennae for sensory feedback

Thumb

- ♦ Smartest finger (brain of the hand)
- ♦ Tension regulator

Contact

♦ Static Friction (Bow & Arrow)

♦ Dynamic Friction (Rock Skip)

affects Density independent

of Velocity & Placement

♦ Torque (rotational force)

<u>Equilibrium</u>

♦ Stability

♦ Balance

FUNCTION

♦ Naturalness

♦ Sensory bandwidth

♦ Responsiveness, adaptability

- ♦ Typically referred to as "French"

 - ♦ Pronated (internally rotated) ♦ Focused on Lower Arm Fulcra

Overhand

crossings, legato bow strokes

♦ Facilitates efficient string

ORIENTATION

Underhand

String Stiffness/ Formant

(speed *increases* when Formant increases)

(force *decreases* when **Formant** increases)

PLACEMENT

String Contact Point

Formant (Distance from Bridge)

♦ Skew (tip/ screw angling + Clock

Direction) → **Formant** travel)

♦ Incline (pivoting side of the string)

angle + Clock **Direction**)

→ affects string amplitude &

Density independent of **Speed**

♦ more String Stiffness → More force

(independent of Formant)

Bow Contact Point

2 middles (hair vs. stick middle)

♦ Tilt (hair/ stick angling + Clock

Direction)

Functionality

♦ Articulation, springiness

♦ Control, finesse

♦ Leverage (mechanical advantage)

- ♦ Typically referred to as "German"
- ♦ Supinated (externally rotated)
- ♦ Focused on Upper Arm Fulcra
- ♦ Facilitates efficient bow force,
- spiccato bow strokes

©2024 by Tristen Jarvis - This document is influenced by Will Cravy, David Allen Moore, Nicholas Walker, Scott Dixon, Andrew Raciti, Tracy Rowell, Etienne LaFrance, Paul Ellison, and Francois Rabbath; as well as Caroline Emery, Simon Fischer, Percival Hodgson, Lucien Capet, Anders Askenfelt, Knut Guettler, and Erwin Schoonderwaldt